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Software systems represent a hierarchy of modules. Client modules contain sets of procedures that 
extend the capabilities of imported modules. This concept of extension is here applied to data types. 
Extended types are related to their ancestor in terms of a hierarchy. Variables of an extended type 
are compatible with variables of the ancestor type. This scheme is expressed by three language 
constructs only: the declaration of extended record types, the type test, and the type guard. The 
facility of extended types, which closely resembles the class concept, is defined in rigorous and concise 
terms, and an efficient implementation is presented. 
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1. INTRODUCTION 

Modern software development tools are designed for the construction of exten- 
sible systems. Extensibility is the cornerstone for system development, for it 
allows us to build new systems on the basis of existing ones and to avoid starting 
each new endeavor from scratch. In fact, programming is extending a given 
system. 

The traditional facility that mirrors this concept is the module-also called 
package-which is a collection of data definitions and procedures that can be 
linked to other modules by an appropriate linker or loader. Modern large systems 
consist, without exception, of entire hierarchies of such modules. This notion 
has been adopted successfully by modern programming languages, such as Mesa 
[4], Modula-2 [8], and Ada [5], with the crucial property that consistency of 
interfaces be verified upon compilation of the source text instead of by the linking 
process. An enormous number of calamitous pitfalls, which constituted a genuine 
impediment to the construction of extensible systems, have thereby been elimi- 
nated. The essential ingredient of these systems is that a new module can be 
developed and changed without the need for recompilation of the modules on 
whose resources it rests. It was made possible by the textual separation of a 
module description into a definition and an implementation part, where the 
former specifies the interface. 
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Extensibility has, however, been largely confined to procedural aspects. The 
aspect of applying extensibility to data, and data types in particular, has received 
less attention. The first successful step in this direction appears to have been the 
concept of the class in Simula 67 [l], and in particular the notion of the prefix 
to a class. It has been adopted in derivatives of Simula, notably Smalltalk [2, 31, 
Object Pascal [7], and C” [6]. 

The basic idea is to provide a facility for defining a new data type that relates 
to an existing type by some rule of compatibility. It receives genuine importance 
if the new type can be defined in a module importing the existing type, that is, 
when the class feature coexists with that of separately compilable modules. 
Regrettably, the class feature has remained rather vaguely defined and is usually 
presented in combination with other language features. This factor is witnessed 
by the undue length and verbosity of language manuals. The concept has therefore 
remained difficult to understand and apply. 

The main purpose of this paper is to base data type extensions on well- 
understood mathematical concepts and to present a rigorous, complete, and 
concise definition. 

2. EXTENDED DATA TYPES 

The notion of extensible data type to be presented here is based on the well- 
known concept of data type used in most modern programming languages. Here 
we shall in particular adhere to the syntax of Modula-2. It is based on the record 
structure, the cornerstone of programmer-defined data types. 

Definitions. Given a declaration of the form 

T’ = RECORD (T) . . . END 

T’ is a (direct) extension of T, and T is the (direct) base type of T’. We write 
T’+=T. 

Let, for example, a type T and extensions TO and Tl be defined as 

T = RECORD X, y: INTEGER END 
TO = RECORD (T) z: REAL END 
Tl = RECORD (T) b: BOOLEAN; s: CHAR END 

The base type is extended by the record fields specified in the declaration of 
the extension. The components (fields) of anextended record type are therefore 
those specified in its declaration in addition to those of the (direct) base type. In 
the given example, TO has fields X, y, z, and Tl has fields X, y, b, and s. It is 
essential that the definition of the extension need not occur in the same module 
as that of its base type. It can occur in any module importing the base type. 

Extended types can be reextended, thereby giving rise to type hierarchies. For 
example, let TOO be defined as 

TOO = RECORD (TO) w: LONGREAL END 

and hence having fields x, y, z, and w. 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988. 



206 l Niklaus Wirth 

Definitions. A type T’ is an extension of a type T if T’ = T or T’ is a direct 
extension of an extension of T. T is a base type of T’ if T = T’ or T is the direct 
base type of a base type of T’. We write T’ + T. 

Using this notation, the relationship of the previously declared types is 
denoted as 

TOO-+TO+T,Tl-+T, TOO+T 

Intimately coupled with the concept of data type is that of assignment compat- 
ibility. The conventional rule is that the type of the assigned value x must be the 
same as that of the variable u to which x is assigned. It is, however, quite 
appropriate to consider an instance (variable) of an extended type to also be an 
instance of its base type(s). Accordingly, it is appropriate that a value x be 
assignable to a variable u if the type of x is an extension of the type of u. Hence 
we generalize the compatibility rule type(x) = type(u) to type(x) + type(u). 

This generalization, however, requires some closer inspection. A record type 
represents the Cartesian product of its component types. Each record value is 
mirrored by a point in the Cartesian space in which each dimension corresponds 
to a record component. A base type is therefore represented by a space of lower 
dimensionality than those of its extensions, and hence an assignment to a variable 
of a base type must be regarded as a projection onto the Cartesian space spanned 
by the base type. 

Definition. An assignment IJ := x is possible if the type of x is an extension of 
the type of u, that is, type(x) + type(u). It constitutes a projection of x onto the 
type of u. 

Let us, for example, assume the following declarations of variables: 

u: T 
~0: TO 
ul: Tl 

Then the following assignments are possible: 

U := uo 

U := ul 
U := uoo 

uo := uoo 

The assignment u := ~0, for example, consists of the components u.x := u0.x 
and u.y := u0.y. The field ~0.2 remains uninvolved. Hence all values with identical 
components x and y result in the same value u. u0 is projected onto the x-y space. 
In contrast, the assignments 

uo := u 
ul := u 
uo := ul 

must be rejected because the assigned values do not completely specify a value 
of the respective assignee. It is tempting to consider the instances of a type as a 
set characterized by the type. Then the instances of an extended type appear as 
a subset. However, the “merging” of different elements of the subset into the 
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same element of the superset, as may happen in the case of projections, is 
inconsistent with the set notion in which distinct elements retain their identity 
when being removed from the subset. 

3. DATA STRUCTURES WITH EXTENDED TYPES 

The concept of related types becomes genuinely useful in connection with data 
structures, and in particular with dynamically generated structures, because it 
permits the construction of heterogeneous structures. They typically represent 
the relationship among their elements by pointers. In typed languages, pointers 
are always bound to a particular type called the pointer base type. It is therefore 
necessary and logical to extend the concept of type extension to pointer types. 

Definition. A pointer type PO is an extension of a pointer type P if its pointer 
base type is an extension of the pointer base type of P. 

Examples are 

P = POINTER TO T 
PO = POINTER TO TO 
Pl = POINTER TO Tl 
PO0 = POINTER TO TOO 

POO-PO+P,Pl+P, POO*P 

The stated rule of assignment then covers the case of pointers too. In analogy 
to the record assignments shown above the pointer assignments 

are possible, whereas 

p := po 
p := pl 
p := poo 

po := p 
pl := p 
po := pl 

are not. The examples demonstrate that the assignment rule guarantees that a 
pointer variable bound to a base type T may possibly refer to a variable whose 
actual type is a (genuine) extension of T but never to a variable whose type is 
not an (extension of) T. 

Because of the relaxation of the assignment rule, it is possible to construct 
data structures that are heterogeneous, that is, structures whose elements are of 
different types. However, they are all related by having a common base type. 
Assume, for instance, a tree structure based on the following declarations where 
T denotes the node type 

P = POINTER TO T 
T = RECORD key: INTEGER, 

left, right: P 
END 

The elements may be of any extension type of T because the pointers referring 
to them are extensions of P and can therefore be assigned to the linking fields 
left and right. 
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Procedures for manipulating the structure, such as insertion, deletion, and 
search, are defined in terms of the (base) type. Procedures manipulating indiuid- 
ual nodes will be specific for each extended type. This facility is once again 
particularly attractive if the base type together with the structure-manipulating 
procedures is defined in a (base) module, whereas its client modules individually 
define extensions of the base type together with procedures operating on respec- 
tive nodes. New client modules with new extensions may be added to a system 
at any time without affecting the base module or other client modules or even 
requiring their recompilation. This clearly contrasts with the notion of the 
abstract data type in which all applicable operators are supposed to be defined 
together with the data type. 

An example of a dynamic, heterogeneous data structure is taken from system 
software: Let the base type be Window, with extensions TextWindow, Graph- 
Window, and PictureWindow. Another example stems from a compiler whose 
“symbol table” is a dynamic data structure with elements of the base type Object. 
Appropriate extensions are ConstantObject, VariableObject, TypeObject, and 
ProcedureObject. Extensions of ConstantObject are, for instance, IntegerObject, 
RealObject, and so forth. Again, we emphasize the fact that the extensions can 
be declared in different modules, which may be added to a system without 
invalidating the existing modules. 

4. TYPE DISCRIMINATION 

If, for example, after a search through a tree, an operation is to be applied to a 
referenced element, it may well be necessary to determine the actual type of that 
element since the operation may depend on the particular extension type. 
However, the element is referenced by a pointer obtained from the structure 
(fields left and right). The pointer is therefore of the (common) base type and 
does not yield access to extension specific information. In order to access fields 
of extensions it must be established that the element is actually of the anticipated 
type. A facility for type discrimination is therefore required. We emphasize that 
this is in contrast to the case of statically defined variables since their (actual) 
type is always the one explicitly declared in the program text. 

Definition. A type test is a Boolean expression of the form u IS T, where v is a 
designator and T a type. The symbol IS is classified as a relational operator and 
is pronounced as “is (of a type which is) an extension of.” 

Because types must be identifiable within variable designators, and since 
designators do not include expressions, a second form of discriminator is sug- 
gested. Its sole purpose is to guarantee that a designator is of the indicated type. 

Definition. A type guard applied to the designator v has the form u(T). It 
asserts that u is of type T. If this is not so, the guard aborts execution of the 
program. 

Referring to the preceding examples, we recall that the assignment u0 := u is 
not admissible. It is, however, if an appropriate guard is applied to u, namely 
u0 := u(T0). By the same token, access to the field z via u, that is, the designator 
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U.Z, is not admissible. However, the designator u(TO).z is correct since the guard 
asserts that u is an object of type TO, which has a field z. 

5. EXTENDED TYPES VERSUS VARIANT RECORDS 

Inhomogeneous data structures are quite common. Most languages offer some 
facility to express these structures in tricky and, from a mathematical point of 
view, unsatisfactory ways. In Pascal and Modula-2, they are expressed as variant 
records. Specific variants are designated by values of a (syntactically) distin- 
guished field called the tug field. The variant record facility bears several draw- 
backs. Of particular relevance is the danger of misusing a field declared as 
belonging to one category, whereas actually the tag value specifies the individual 
record to be of another category. This can have catastrophic consequences in the 
case of assignment to the field. In principle, every field access could be preceded 
by an (implicit) check of the tag value validating the field in question. Most 
implementations forego this “overhead.” An even worse misuse of the facility is 
the assignment of a new value to the tag field istelf: As a side effect, it invalidates 
all previous assignments to the fields of the specified category. 

A severe handicap is the fact that further cases (variants) cannot be added 
unless the record declaration is altered. Therefore, the module containing it must 
be recompiled, and with it all the client modules referring to it. The variant 
record facility clearly defies the notion of extensible system design. 

In systems relying on automatic storage retrieval (garbage collection), the 
variant record is a severe stumbling block. Its handling is complex and cumber- 
some to say the least; we note in passing that a declaration may contain several 
discriminated cases at the same level, and also that they may be nested. It is 
practically impossible to use a garbage collector in conjunction with variant 
records without restricting the feature in some way. 

In contrast, the presented facility for type extensions allows for a safe and 
efficient implementation, in particular in conjunction with automatic storage 
retrieval. 

6. POLYMORPHIC PROCEDURES 

The adjective polymorphic is used for procedures that feature parameters for 
which the strict type consistency rule (equality of formal and actual parameter 
types) is relaxed. We note that the presented concept of extended types includes 
precisely such a relaxation. If a formal value parameter is of base type T, then 
the corresponding actual parameter can be of any extension of T. This follows 
from the fact that value parameters are considered as local variables to which 
the actual parameter’s value is assigned initially. 

Reference parameters (in Pascal and Modula called VAR-parameters) are 
considered as local pointers to which a reference to the actual parameter is 
assigned initially. It follows that the same relaxation holds for both value and 
reference parameters. 

7. TYPE EXTENSION AND INFORMATION HIDING 

The most important aspect of the module concept from the point of view of 
system design is the decoupling of individual modules. By this we refer to the 
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possibility of developing modules separately, once their interfaces are defined. 
More specifically, it is essential that changes in subordinate modules be accom- 
plished without the need for changing their client modules. This includes recom- 
pilation of subordinate modules without the need for recompilation of the clients. 

This decoupling is achieved by separating a module description into a definition 
part and an implementation part. Changes to a module remain hidden, as long as 
the definition part remains unchanged. The definition part constitutes the 
interface in which the name only of a type is declared, whereas its properties and 
the applicable operations are specified in the implementation part. A type defined 
in this manner is called an abstract data type. In Modula-2 the type is called 
opaque, and it effectively constitutes a pointer type whose binding is specified in 
the implementation part. 

Sometimes the total invisibility to clients appears as a harsh measure, and it 
is circumvented by the introduction of procedures merely inspecting a single 
component of the hidden data structure. A more general solution consists of the 
declaration of the visible part of a type in the module’s definition part and of its 
extension in the implementation part. Let, for example, a type T be declared in 
the definition part of a module M: 

T = RECORD 
X, y: INTEGER 

END 

and then let T be extended in M’s implementation part by the private fields 
a and b (for convenience, the declaration of x and y is repeated): 

T = RECORD 
X, y: INTEGER; (*externally visible fields*) 
a, b: INTEGER (*private fields) 

END 

An explicit mention of the base type is unnecessary because the (re)use of the 
name T declared in the definition part identifies this (re)declaration as an 
extension. 

We draw attention to the fact that extension of a type specified in a module’s 
definition part is of a conceptual nature only. Referring to the example, every 
variable of type T consists of the four components x, y, a, and b; nonextended 
versions do not exist. It is therefore appropriate to regard the declaration given 
in the definition parts as a public projection of the complete declaration given in 
the implementation part. 

8. IMPLEMENTATION 

The simplicity of the presented type extension concept raises the hope that its 
implementation is simple too and therefore also efficient. This is indeed so; in 
particular, the addition of type extensions does not impinge on any of the basic 
facilities already present in languages such as access to record fields. The only 
new constructs requiring additional instructions are the type test and the type 
guard. Since they do not occur with significant frequency, at least in soundly 
designed programs, they contribute little to execution time. It is noteworthy that 
the concept can be implemented entirely free of any run-time support routines. 
Type test and type guard result in a small number of in-line instructions. 
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When considering a way to implement the type test, we notice that the type of 
a variable can be determined by a mere textual scan, except when the variable is 
accessed indirectly, that is, in the cases of pointers or VAR-parameters. Only in 
these two cases need a compiler generate additional instructions and need the 
variables be supplemented by additional type information. 

Variables accessed via pointers are (usually) allocated dynamically, for in- 
stance, by an explicit executable statement NEW(p) that sets aside the storage 
and assigns its address to the pointer variable p. It is at this point that the 
variable is supplemented with an identification of its type. In passing we note 
that systems relying on automatic storage retrieval (garbage collection) require a 
type description anyway. In practice this identification consists of a (hidden) 
pointer to a type descriptor. The pointer is called a type tag. 

In the case of (record typed) VAR-parameters, the type tag of the referenced 
variable is supplied together with its address. This is necessary because the actual 
record may be statically allocated, and therefore, does not carry a tag. 

For our purpose, type descriptors are extended by an additional field repre- 
senting a pointer to the descriptor of the type’s base type (the base tag). This 
information is used to evaluate type tests and to execute type guards. In order to 
explain the required operations, we postulate as an example the following con- 
stellation of types: 

TOO0 + TOO ---) TO + T, TOO1 + TOO, TOl-+TO, Tl+T 

Consider now the type test IJ IS TO, where IJ is a VAR-parameter of type T. 
(An analogous case is p IS P, where P is a pointer type bound to 2’). Evidently, 
a static (compile-time) test can verify that TO is indeed an extension of T. If this 
were not the case, a programming error would be likely. It is, for instance, obvious 
from the program text that u0 IS Tl is false, and hence this situation must be 
diagnosed as a type error. 

The test at execution time must determine whether or not u is an extension of 
TO, that is, a TO, TOO, TOl, TOOO, or TOOl. This is accomplished by successively 
comparing the tag TO with the types (tags) along the linked list starting with the 
element designated by u (p?). If, in this example, u (pt) is an element of type 
TO, a match is found by the first comparison, if it is an element of type TOO or 
TOl, it is found by the second comparison, and if it is a TOO0 or a TOOl, it is 
found by the third comparison. If u is of type Tl, no match is found since Tl 
does not lie on the traversed branch of the tag tree. 

The type test is expressed by the following piece of program. t is a local variable 
(register): 

t := u.tag; 
LOOP 

IF t = TO THEN EXIT (TRUE) END; 
t := tT.basetag; 
IF t = NIL THEN EXIT (FALSE) END 

END 

The operation for the type guard is virtually identical, except that no Boolean 
value need be generated, and program execution may be aborted instead. 

Since both type test and type guard involve sufficiently few instructions, they 
can well be represented by in-line code, enhancing the resulting efficiency. 
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Unfortunately, the provision of a loop construct for descending the linked list of 
tags is unavoidable since in the context of the test no information is available 
about the number of extensions of the tested type that may have been defined in 
other modules. (Note that TOO, TOl, TOOO, and TOO1 may have been defined 
in modules importing TO). However, in practice, the length of the list of tags will 
be very small, ensuring that the test will never involve the execution of a large 
number of instructions. 

The implementation of the extended declaration in implementation parts 
(public projection in the definition part) poses the following problem: When 
compiling a client module importing the record type, the compiler must be 
provided with information about the type, in particular its size. This information 
must therefore be included in the symbol file generated when the definition part 
is compiled. At this time, however, the size is unknown, if the type is to be 
extended in the corresponding implementation part. In fact, it must be unknown, 
because by definition clients must not depend on the imported modules’ imple- 
mentations. We suggest circumventing this intrinsic dilemma by providing a 
compiler hint in the definition part, which indicates a maximum size that the 
record declaration in the implementation part may require. This hinted size is 
then taken as the actual size, and respecifications of the type in the implemen- 
tation part will not affect clients, as long as the required size does not exceed the 
hinted size. 

9. ADDITIONAL PROGRAMMING CONSTRUCTS 

The facilities presented here, namely the type extension declaration, the type 
test, and the type guard are logically sufficient to construct and use inhomoge- 
neous data structures with the guarantee of full type integrity. Nevertheless, one 
is tempted to suggest additional language constructs with the goal of improving 
efficiency. An obvious inefficiency of programs restricted to the basic facilities 
lies in the repeated (and therefore unnecessary) execution of the same checks. 

A sequence of references to fields of the same (extended) record require 
repeated checks. They can be avoided by (textually) binding the record variable 
to the extended type. For example, given the parameter u of type T, the three 
statements 

q := v(Tl).b; ch := u(Tl).s; r := u(Tl).u 

could be condensed into a construct of the form 

WITH u: Tl DO 
q := v.b; ch := v.s; r := v.u 

END 

Here the WITH clause merely states that u is to be considered as of type Tl 
within the contained statement sequence, and that this fact is asserted before 
execution of the statements. (Note that this kind of WITH statement differs 
from that of Modula-2: Neither is an anonymous variable involved, nor is a new 
scope containing the field identifiers opened.) If type guards as previously 
introduced are considered as punctual guards, this WITH construct appears as a 
regional guard. 
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Obviously, a conscientious programmer will ensure that a guard will never lead 
to program abortion. Hence, constructs of the form 

IF u IS TO THEN . . . u (TO) . . . END 

will be frequent. This situation is analogous to 

IFp#NILTHEN...pT...END 

with every pointer dereferencing operation implying a guard against the value 
NIL in spite of the fact that a nonnil value had been asserted by the preceding 
test. The idea of combining test and guard(s) therefore suggests itself. It might 
be expressed by a construct similar to the WITH statement 

WHEN u IS TO THEN 
q := u.b; ch := VA; r := v.u 

END 

implying that the statements are executed if the test is affirmative. However, 
ample experience has taught that the combination of different objectives in a 
single construct is often of dubious value in practice, causes considerable (and 
sometimes unforeseen) complications of implementation, and quickly calls for a 
(nonterminating) sequence of extension proposals. In this case, an ELSIF option, 
as well as the admission of unrestricted Boolean expressions in the WHEN 
clause, immediately appear as desirable. 

If the temptation to introduce such combinational constructs is resisted, it 
might be argued that the burden of avoiding double checks could be placed onto 
the compiler. An “intelligent” compiler might accumulate sufficient contextual 
information to recognize the superfluity of type guards when they are implied in 
an IF clause. In these cases, the compiler would suppress the emission of the 
unnecessary guard instructions. The required compilation scheme would in fact 
be similar to techniques employed for other code optimizations (i.e., improve- 
merits) . 

It remains an open question, however, whether the resulting gain in execution 
speed would justify either the introduction of combinational language constructs 
or a complex additional optimization machinery in the compiler. 
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